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Abstract-Cracks and rigid-line inclusions, or anticracks, are commonly observed in many engin
eering materials, such as intermetallics and ceramic composites. Interactions among these cracks
and rigid lines can significantly affect the strength of these materials. Strength degradation due to
finishing operations, such as grinding, also depend to a large extent on these interactions near a free
surface and their associated surface and subsurface damage evolutions. Accordingly, modeling of
interactions among general systems of cracks and rigid lines in the vicinity of a free surface, subject
to general loading conditions, is the main thrust of this paper. An integral equation approach based
on the fundamental solutions due to point loads and point dislocations in an elastic half plane is
utilized for this purpose. The integral equations are reduced to a system oflinear equations consisting
of the distributions of Burger's dislocation vectors and forces on the cracks and the anticracks,
respectively. The proposed solution procedure also allows direct determination of the rigid-body
rotations for the rigid lines. The results obtained from the present analysis are first verified against
existing results for a single crack or rigid line near a free surface. The amplification and shielding
effects on stress intensity factors due to interactions among various distributions ofcracks and rigid
lines are then investigated. Such interactions near a free surface play crucial roles in surface and
subsurface damage evolutions during high-speed machining of ceramic materials.

I. INTRODUCTION

Most common engineering materials contain defects in the form of cracks, voids or rigid
inclusions that can significantly affect their load-carrying capacities. In recent years, various
ceramic compounds and intermetallics, by virtue ofpossessing ordered superlatice structures
and high activation energies for diffusion, have been found to be ideally suited for high
temperature strength and modulus retention. However, these ceramic compounds and
intermetallics are generally very brittle at room temperature. In order to enhance the
ductility at room temperature and to lower the brittle-ductile transition temperatures,
various researchers have attempted to change the crystal structures using alloys. The
alloying agents, however, introduce second-phase particles in the matrix. The networks of
microdefects (voids or inclusions) introduced through alloying can significantly affect the
final strength and characteristics ofthe products. In many material processing and structural
applications, the interactions among these microdefects (voids or inclusions) have been
observed to be one of the important factors in determining the macro-failure modes [e.g.
Kachanov (1985), Horii and Nemat-Nasser (1986), Baeslack et al. (1988), Haritos et al.
(1988) and Jha et al. (1988)].

For ceramics and intermetallics, this network of microdefects and their associated
brittle fracture modes provide crucial avenues for material removal processes. As shown
by Hu and Chandra (1992a), the apparent moduli of an ultrahard ceramic material may
be reduced to less than 40% of the original values by inducing predetermined distributions
of microcracks. This ability to control apparent moduli has very important ramifications
for various material removal processes, such as grinding, drilling, etc. For grinding of
ceramics, the surface and subsurface damage evolution is also significantly influenced by
the interactions among cracks generated due to grinding and the pre-existing microcracks
(Hu and Chandra, 1993a). For such material removal processes, the interactions occur near
a free surface, and it has been observed that the free surface greatly modifies the nature of
these interactions.

Two kinds of microdefects are typically observed in a material. The first one is a
microvoid, which can also be idealized as a microcrack. A crack is essentially a cut that
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transmits no traction across it, but allows a displacement discontinuity. The other type of
microdefect is a rigid inclusion. A rigid lamella may be modeled as the opposite of a crack,
i.e. it transmits tractions but prevents displacement discontinuity. Moreover, rigid lamella
can undergo only rigid-body motions and no deformations. Dundurs and Markenscoff
(1989) also refer to these rigid lines as anticracks. In addition to representing harder
inclusions, rigid lines may also be used to model the fibers or whiskers in a metal-matrix
or ceramic-matrix composite material. Many advanced materials for cutting tools belong
to this category, and interactions among rigid lines and microcracks near a free surface
must be considered in order to model damage evolutions in such applications. Many
structural composite components may also require surface finishing, and interactions among
rigid lines and cracks near a free surface need to be understood thoroughly in order to
comprehend the extent of damage induced by such operations. Accordingly, the inves
tigation of interactions among general systems of cracks and rigid lines near a free surface
is the main thrust of this paper. An integral equation approach based on the fundamental
fields due to point loads and point dislocations near a free surface is utilized for this purpose.
A Gauss-Chebychev quadrature is used to reduce the integral equations to a linear system
of equations consisting of the distribution of forces and Burger's dislocation vectors on the
rigid lines and cracks, respectively. The proposed solution procedure also allows direct
determination of the rigid-body rotations for the rigid lines.

This paper starts with a review of the literature relevant to problems involving cracks
and rigid lines, followed by a presentation of fundamental solutions due to point loads and
point dislocations near a free surface. An integral equation formulation for general systems
ofcracks and rigid lines near a free surface is developed next. The numerical results obtained
by the proposed technique are first verified against existing solutions for a single crack or
a rigid line near a free surface. General systems of cracks and rigid lines in the vicinity of
a free surface subject to general loading conditions are considered next, and the proposed
technique is used to investigate the amplification and shielding effects in such systems.
Implications of such interactions, or damage evolutions, during ceramic grinding are also
discussed. It is also interesting to note that, for a given configuration, the interactions
between two cracks and between a crack and a rigid line bound the range of all possible
interaction effects.

2. BACKGROUND

The problems involving rigid lines, or anticracks, have also been widely investigated
in the context of elasticity. An extensive review of elastic problems involving inclusions is
given by Mura (1987, 1988). Initial work on rigid-line inclusions can be traced back to
Muskhelishvili (1953) and Eshelby (1957, 1959). Since then, problems involving rigid-line
inclusions have been investigated by several researchers [e.g. Atkinson (1973), Brussat and
Westmann (1975), and Hasebe et al. (1984)] for isotropic elastic bodies. Chou and Wang
(1983) and Wang et al. (1985, 1986) considered a rigid-line inclusion in an isotropic planar
elastic body and derived analytical expressions for the stress field due to uniform remote
loading. The same problem has also been considered by Ballarini (1987) using an integral
transform method. Sendeckyj (1970) and Selvadurai (1980) investigated elastic-line
inclusions. Atkinson (1973) also considered elastic-line inclusions, and a solution for a half
plane containing an anticrack perpendicular to the free surface is given. He obtained an
asymptotic solution for the stress fields under the assumption that the inclusion is much'
harder than the matrix. Erdogan and Gupta (1972) studied the more general problem of
bonded materials containing a flat inclusion that may be rigid or elastic with negligible
bending rigidity. They formulated the problem as a system ofsingular integral equations that
is solved by expanding the solutions in Chebychev polynomials. Dundurs and Markenscoff
(1989) provide a direct Green's function formulation for rigid lines. Such a formulation is
very suitable for solution by currently available numerical methods. They also provide
pertinent fields for concentrated forces, dislocations, and couples applied on the line of the
anticrack. Li and Ting (1989) investigated line inclusions embedded in an anisotropic
infinite elastic medium subject to uniform remote loading. Stroh's (1958, 1962) formalism
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is used to obtain the displacement and stress fields. They consider both rigid .and elastic
inclusions. A pair of singular Fredholm integral equations ofthe second kind is derived for
the diffe.ence in the stress on both surfaces of an elastic and anisotropic inclusion. If the
relative rigidity of the matrix is small compared to that of the inclusion, Li and Ting (1989)
showed that the governing equations can be decoupled. For such rigid-line cases, they also
obtain asymptotic solutions for the traction and the rotation of the rigid line.

Most ofthe existing analyses including rigid lines, however, consider a single rigid-line
inclusion. On the other hand, problems involving interacting cracks have been studied more
extensively. Goldstein and Salganik (1974) studied brittle fracture of solids with arbitrary
cracks. Utilizing the superposition technique and the ideas of self-consistency applied to
the average tractions on individual cracks, Kachanov (1985, 1987) obtained approximate
analytical solutions for the stress intensity factor due to interacting elastic cracks. Melin
(1983) and Broberg (1987) investigated the directional stability ofcracks using linear elastic
fracture mechanics and observed that the interactions among cracks significantly influence
the directional stability and crack branching characteristics. Hori and Nemat-Nasser (1987)
also used the method of Muskhelishvili to obtain a two-dimensional elasticity solution for
interacting microcracks near the tip ofa macrocrack. Using a dislocation approach, various
researchers have also reduced the problem of a linear elastic solid with interacting cracks
to a system of integral equations [e.g. Chatterjee (1975), Erdogan and Gupta (1975), Lo
(1978, Cotterell and Rice (1980), Melin (1986), Chudnovsky et al. (1987a,b), and Miiller
(1989)].

The problem ofa half plane containing a crack has been studied by several researchers
[e.g. Ioakimidis and Theocaris (1979), Keer et al. (1982), Keer and Bryant (1983), Chen
(1984), Nowell and Hills (1987), and Li and Hills (1990)]. Recently, Hu and Chandra
(1993a) used an integral equation approach to investigate the interactions among cracks
near a free surface and their implications on surface degradation during grinding of
ceramics. A force-type integral equation, where the kernels contain only weak logarithmic
singularities and the unknowns are Burger's vectors on the crack faces, was developed by
Cheung and Chen (1987) for a full plane problem containing cracks. Zang and Gudmundson
(1989, 1991) extended the approach to analyse half plane and anisotropic problems.

As discussed before, the problems involving interactions among cracks and anticracks
are of crucial significance for understanding various physical phenomena ranging from
failure of alloys containing second-phase particles to chip formation mechanics in ceramic
grinding processes. In spite of thsese practical implications, problems involving interactions
of cracks and anticracks have received relatively little attention so far. Brussat and
Westmann (1975) investigated the interactions among collinear rigid-line inclusions subject
to uniform remote loading. For this special case, they establish a direct correspondence
between the Westergaard stress function for elastic crack problems and a stress function
for rigid-line inclusion problems. A correspondence is also shown to exist between crack
opening displacements and axial forces on the rigid inclusions.

3. FUNDAMENTAL FIELDS DUE TO POINT LOADS AND POINT DISLOCATIONS

An integral equation approach is pursued here to investigate the interactions among
general systems of cracks and rigid lines near a free surface subject to general loading
conditions. Cracks and rigid lines can be modeled as continuous spatial distributions of
dislocations and tractions. Accordingly, the corresponding fundamental solutions due to a
point load and a point dislocation are discussed in this section. Two-dimensional problems
are considered here.

For a two-dimensional elastic halfplane (x ~ 0) subjected to a concentrated force with
components Px and Py at the location (e, 0), the solutions due to Dundurs and Hetenyi
(1961) and Hetenyi and Dundurs (1962) at a point (x,Y) may be written as

(la)
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I
2Gux,y :::: 2n(K+ I) [Px H3(X,y; 0+pyH4(x,y; ~»),

I
2Guy,x :::: 2n(K+ 1) [PxHs(x,y; 0 +pyH6(x,y; 0),

I
2Guy,y :::: 2n(,z':;:'-ij[PXH7(X,y; O+pyHg(x,y; ~»),

1
an :::: 2n(K-.:t-i) [PxH9(X,y;~) + pyHIO(x,y; ~)],

I
a<}.:::: 2n(K+-i)" [PxHI I(x,y; O+pyH 12 (x,y; 0),

I
ayy :::: 2n(K+ I) [PxHdx,y; 0+PyH I4 (X,y; ~)],

(I b)

(Ie)

(Id)

(Ie)

(If)

(I g)

where G is the shear modulus. The constant K :::: (3 -4v) for plane strain and K :::: (3 - v)j
(l +v) for plane stress, where v is the Poisson's ratio. The details of the kernels HI~HI4 are
given in the Appendix; they were obtained from Dundurs and Hetenyi (1961) and Hetenyi
and Dundurs (1962) using MATHEMATICA (Wolfram, 1991).

The fundamental solutions at (x,y) for a two-dimensional half plane subjected to an
edge dislocation with Burger's vector components bx and by acting at a point (e, 0) may
also be expressed as (Dundurs and Mura, 1964)

I
ux,x = 2n(K+1) [bxl,(x,y; e)+byI 2(x,y; 0],

1
Ux,y = 2n(K+ I) [bxI3(x,y;~)+byI4(x,y; 0],

1
uy,x = 2n(K+ I) [bJs(x,y; ~)+bJ6(X'y;e)],

I
uv " = -2--(--I')-[bxI7(x,y; e)+bJg(x,y; 0),

_'f nK+ .

G
axx =-(-----1)-[bJ 9(x,y;0+bJ IO (x,y;0],n K+ -

G
ax\, = --(-------1-)- (bJ" (x, y; ~l +b,Jdx,y; e»),. n K+ -

G
ayy = n(~-+ I) (bxl 13(x,y; el+ byI I4(x,y; ell.

(2a)

(2b)

(2c)

(2d)

(2e)

(2f)

(2g)

The details of the kernels 11-114 are also given in the Appendix.
It is important to notice here that the displacement gradient fields and the stress fields

in eqns (1)-(2) contain a singularity of the order of r as the distance r between the field
point (x, y) and the source point (~, 0) approaches zero. This order of singularity is the
same as that for the full plane. The singular behavior for the point load case in a full plane
has been discussed widely, particularly in the boundary integral equation literature (e.g.
Banerjee and Butterfield (1981), Mukherjee (1982) and Cruse (1988)]. Recently, Dundurs
and Markenscoff (1989) also examined the singular behavior for a point dislocation in a
full plane. A similar procedure is followed in the present work to represent the singular
integrals for the half plane in a Cauchy principal value sense.
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4. AN INTEGRAL EQUATION FORMULATION FOR GENERAL

CRACK-ANTICRACK SYSTEMS

It is assumed here that the crack, like any other void, cannot transmit any traction.
Accordingly, the crack surface is required to be traction free. For the purpose of this work,
any crack closure is neglected, and it is assumed that the crack remains open throughout
the application of the extemalload. The anticrack, like any other rigid inclusion, can only
admit rigid-body motions. A perfect bonding between the rigid line and the matrix is
assumed here.

A general system containing M cracks and N anticracks embedded in arbitrary orienta
tions in an elastic halfpla,ne is considered here. We concentrate on the ith defect (crack or
anticrack) and consider a local tangential-normal coordinate system with origin at the
center of the defect, the normal direction denoted by s(l), and the tangential direction along
the ith crack, or anticrack, denoted by t(l). The coordinates of the center of the ith defect
are denoted by (x~i),y~i)) and the angle between x and t(l) is denoted by 6(1). This is shown
schematically in Fig. 1. The occupancy of the ith defect is denoted as - 0<1) < t(1) < 0<1). The
solution of such a system must meet the following requirements: (1) The stress field must
satisfy equilibrium. (2) The free surface must be traction free. (3) Crack surfaces must be
traction free. (4) Rigid lines, or anticracks, should undergo only rigid-body motions. These
rigid-body motions should not cause any material separations (assuming perfect bonding).

Under the above assumptions, the boundary conditions for the cracks require that
(i = I, 2, ... , M)

(3)

The boundary conditions for the rigid lines may also be expressed as (j = 1,2, ... , N)

where aU) and pUl are the rigid-body translations in the tU) and sU) directions, respectively,
and wU) is the rigid-body rotation in the tU)-sU) plane.

The rigid-body displacements may be differentiated with respect to tU), yielding the
boundary conditions (j = I, 2, ... , N)

OUU)
and _s_. = wU)

ot(])
for -aU) < tU) < aU) (5)

for anticracks, or rigid lines.
Let us now consider the effects of all cracks and anticracks on the mth crack. For

consistency, the stress fields associated with different cracks and anticracks are transformed
to the local tangential-normal (t(m), slm») coordinate system for the mth crack. For example,

~
~\ (x:'.y~,,>

, a
Q

til'
x

y

Fig. 1. Schematic diagram of cracks and rigid lines near a free surface.
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the stress fields associated with the ith crack may be transformed as

(6a)

and

(6b)

where (j.mil is the angle between axes t(il and t(ml.

The N anticracks are now represented by their corresponding distribution tractions
and the M cracks are represented by their corresponding distributed dislocations. Summing
the effects of all cracks and anticracks on the mth crack we get (m 1,2, ... ,M)

(7a)

and

(7b)

where M), bfl, p~j) and pij) represent the unknown dislocations and tractions on the ith
crack and the jth rigid line, respectively; otnO) and a~;'O) are the stress components at the
location of the mth crack but in the absence of all cracks and rigid lines. Here, the kernels
K II-K24 in eqns (7) may be obtained by transforming the fundamental solution given in
the Appendix to an appropriate local coordinate system. The final results may be expressed
as

K (t(lIll t U») = .~~ {cos2 e(ml[sin em I (tllIl) t(ii) -cos e(i) I (t(lIl) t(i))]
II , . n(K+ I) 9, 10,

+2 sin elm) cos e(m) [sin eli)III (t(m) , t(i)) -cos eU)112(t(m), t U»)]

+sin 2 B(m)[sin BU)113 (t(m), t U») - cos BU)114(t(m), tU»)]} , (8a)

K (t(lIl) t(i)) = --~.,- {cos2 e(fIl) (cos BU) I (t(fIl) t(i!) + sin eli) I (t(fIl) t lil )]
I2, n(K + I) . 9, 10,

+ 2 sin 8(fIl) cos e(/nl[cos eU1 III (t(ml, t(il) + sin eU)II 2(t(ml,tli ))]

+sin 2 e(m)[cos eli)113 (t(m) , t(i») +sin eo>114(t(m), t(i»)]} , (8b)

K 13 (t(ml, till) = 2Ji(d+"i) {cos2 elm) [sin ew H9 (t(ml, tID) -cos 8wH I o(t(m), tUl )]

+2 sin elm) cos elm) [sin ewH I I (t(m) , t U») - cos eU) H 12 (t(m>, lil)]

+ sin 2 elm) [sin (jU) H I 3(t(m) , t U») - COS e U)H 14 (t(m), t UJ )]}, (8c)

K I4 (t(m), tU») = 2n(~+-fj {cos2 (j(ml [cos eU) H9(t(m), t Ul ) + sin (jU) HI o(t(m), tUl )]

+ 2 sin 8(m) cos e(ml[cos O(D H II (t(m), t(i)) -sin OU) H I2 (t(ml, t U »)]

+sin 2 e(m)[cos eu>H 13 (t(m), t(j)) + sin eU)H I4 (t(m), t eil )]} , (8d)
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K (lm) t(i) = G {sin ()(m) cos ()(m) [sin ()(i) I elm) t(i) -cos ()(i) I (t(m) t(i»]
21, n(K+I) 9, 10,

+ [sin2 ()(m) -cos2 ()(m)][sin ()(i)III (t(m), t(i» -cos ()(i)1 12 (lm) , t(i)]

+sin o(m) cos o(m) [sin O(i)II 3 (t(m) , t(i» -cos O(i) II 4 (t(m) , t(i)]}, (8e)

K e
lm) t(i) = G {sin o(m) cos o(m) [cos e(i) I (t(m) t(i) +sin ()(i) I (t(m) t(i)]

22, n(K+I) 9, 10,

+ [sin 2 ()(m) -cos2 e(m)][cos e(i)III (t(m), t(i) +sin e(i)II 2 (lm) , li»]

-sin e(m) cos ()(m) [cos ()(i) IoCt(m), t(i) +sin ()(i)1 14 (t(m) , t(i)]}, (8f)

K (t(m) t(j) = I {sin e(m) cos ()(m) [sin OUJH (t(m) tUl) -cos OUlH (t(m) t(j)]
23, 2n{K+ I) 9 , 10 ,

+ [sin 2 o(m) -COS2 o(m)][sin OU)HI I (t(m) , tU» -cos eU)Hdt(m\ t(j)]

- sin ()(m) [sin eU)H 13 (t(m), tU» - cos OU)HI 4 (t(m) , t UJ )]}, (8g)

K (t(m) tU) = I {sin o(m) cos e(m) [cos ()U) H (t(m) tU» +sin eU)H (t(m) tU»]
24, 2n(K+I) 9 , 10 ,

+ [sin 2 ()(m) -COS2 o(m)][COS ()U) H II (t(m), t(j) +sin ()U)HI 2(lm) , tU»]

- sin o(m) cos O(m)[sin eU)H 13 (t(m), lj) +sin oUJHI 4 (t(m) , t(j))]}, (8h)

where

with x, y and ~ being substituted as (k = i or j)

x = x~m) + t(m) cos o(m),

y = t(k) sin O(k) _lm) sin o(m) +y~m) _ y~k) ,

~ = X~k) + t(k) cos O(k) .

(9)

(lOa)

(lOb)

(lOc)

The boundary conditions for anticracks, or rigid lines, are considered next. Utilizing
the fact that the components of the displacement gradients transform as

and

u~~) = -uW sin o(mj) cos ()(mj ) -u;Y sin 2 ()(mj ) +u~(l cos2 ()(mj) +u~2 sin O("!i) cos e(mj ). (lIb)

The effects of all cracks and rigid lines on the mth rigid line may be expressed as
(m = 1,2, .. . ,N)
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(l2b)

where u~~O) and u~~O) are the displacement gradients at the location of the mth rigid line,
but with no cracks or rigid lines present in the system, and w(m) is the rotation of the mth
rigid line.

Here, the kernels K 31-K44 in eqns (12) may also be obtained by transforming the
fundamental solution given in the Appendix to an appropriate local coordinate system. The
final results may be expressed as

K (t(m) t(i)) = _~1__ {sin2 e(m) [sin eli) I (t(m) tli) -cos eli) I (t lm ) tld)]
3I, 2n(K+ 1) I, 2,

- sin elm) cos elm) [sin eli) [13(t(ml, t(i») + Is (t(m) , t li »)] - cos eli) [14(t(m) , tli ) + 1
6

(t(m) , t(i))]]

+cos 2 e(m)[sin eli)17(t(m) , t(i)) - cos eli) Is (tIm), tli ))]} , (l3a)

K (t(m) t(i» = __1 {sin 2 elm) [cos eli) I (t(m) t(i) + sin e(i) I (t(m) tli »)]
32, 2n(K+1) I, 2,

- sin elm) cos elm) [cos eli) [13(t(m l, tli )) + Is (t(m) , t(I)] + sin eli) [14(tlml , t(i) + I
6
(tlml , t(i»)]]

+COS 2 elm) [cos eli) I 7(t(m), t(i) +sin eli)18 (tIm), tli»]} , (13b)

K (t(m) t(j») = 1 {sin 2 e(m) [sin e(j) HI (t(m) tU) -cos e(j) HJ(t(m) tUI .)]
33, 4nG(K+ I) '- '

- sin elm) cos elm) [sin e(J) [H 3 (t(m) , tU) - H s(t(m) , tU))] - cos e(J) [H4 (tlln) , tU) + H 6 (t(m) , tli))]]

+ COS 2 elm) [sin eU)H 7(t(m), tU)) - cos eU)H s(t(ml, tU»)]} , (13c)

K (t(m) t(j») = 1 {sin 2 elm) [cos eU)H (t(m) t(j)) + sin eU)H J (t(m) tU)]
34, 4nG(K+1) I' -'

- sin elm) cos elm) [cos e(j) [H3 (tIm) , tlil )+ H s(t(m) , tlil )] + sin e(j) [H 4 (t(ml, tlil) + H 6 (t(m) , tlil )]]

+cos 2 elm) [cos e(J) H 7 (tIm) , tU» +COS e(j) H 8 (t(m) , tU»)]} , (I 3d)

K 41 (t(m) ji)) = 2n(~+1) {sin elm) cos elm) [sin eli) [I I (t(In) , t(i)) - 17(tIm) , tId)]

-COS eli) [12(t(m) , tli») - I g(t(m) , tli))]] +sin 2 elm) [sin eli) Is (t(m) , tli)) - cos eli)16 (tIm) , tli))]

-COS 2 elm) [sin eli) 13(t(m), t(d) -cos (JIi) I4(tvnl , tid)]}, (13e)

K 42 (t(m), tli) = 2n(~+T) {sin 0/1>1) cos elm) [cos Oli) [II (t(ln) , tli» -17(t(m). t li »]

+ sin e(i) [1
2

(t(m) , t(i)) - Is (t(m), t(O)]] + sin 2 e(m)[cos eli) Is (t(m) , t(i» + sin elo h(tlm), tli))]

- cos 2 elm) [cos eli) 13(t(In), t li» + sin eli) I4(t vn ), tli)]}, (13f)

K (t (m) t(j» = 1__. {sin elm) cos elm) [sin eli) [H (t(m) tU » - H (tIm), t(j))]
43, 4n(GK+1) . I' 7_

-COS eli) [H2(t(m), t(j») - Hs(t(m), tlil)]] + sin 2 elm) [sin e(i) H s(t(m), t(j» - cos eli) H 6 (t(m) , r(j»]

_ cos 2 elm) [sin eli) H 3(t(m), tli ») - cos eli) H 4(tlm ), t(j))]} , (13g)
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K (t(m) t W ) = 1 {sin (J(m) cos (J(m) [cos (J(i)[H (t(m) t(j» - H (t(m) tW )]
44, 4n(GK+ 1) I, 7,

+ sin (J(i)[H
2
(t(m) , t(j) - H

8
(t(m), t(j»]] +sin2 (J(m)[cos (J(i) H

5
(t(m) , t(j» + sin (J(i) H 6(lm), t(j»]

-cos2 e(m) [cos ()(i) H 3 (t(m), t(j) + sin eO) H 4 (t(m), t(j))]} , (l3h)

where

(14)

with x, y and ~ also being transformed as two arguments, t(m) and t(j), according to eqns
(10). Here, eqns (7) ensure traction-free conditions on crack surfaces, and eqns (12) ensure
compatible rigid-body motions for the rigid lines. The equilibrium conditions and the
traction-free conditions at the free surface are automatically satisfied by virtue ofthe kernels
K 11-K44•

It can be observed that eqns (7) and (12) give rise to 2(M+N) integral equations. In
order to solve these equations completely for b~i), b~i), pP) and pll), however, we need to
evaluate (2M + 2N) additional constants of integration. It is also important to notice that
we need to evaluate the rotations OJU) for the N anticracks. This requires N additional
equations, bringing the total number of additional equations required to (2M+ 3N). The
(2M+ 3N) additional equations may be obtained by considering the continuity of the opening
shapes of the cracks and the equilibrium conditions for the anticracks. The continuity
requirements for crack opening shapes may be expressed as (i = 1,2, ... , M)

(15)

Assuming that no external force or couple is applied directly on the anticrack, the equi
librium conditions for the anticracks may also be written as (j = 1,2, ... , N)

(16)

Equations (7) and (12), along with the additional constraints of (15) and (16), now
provide an integral equation representation of the interactions in a general system involving
M cracks and N anticracks at arbitrary orientations. The above representation is based on
the fundamental solutions due to a point load and a point dislocation in an elastic half
plane.

The integral equations described above can be solved numerically using a Gauss
Chebychev quadrature scheme. The numerical technique proposed by Erdogan et al. (1973)
for singular integral equations is adapted here and generalized for systems involving cracks
and rigid lines near a free surface, with particular attention given to modeling of rotations
of rigid lines.

The discretized system contains 2(L -1 )(M+ N) equations (where L is the number of
Gauss points on a crack or a rigid line, M is the number of cracks, and N is the number
of rigid lines) but {2L(M+N) +N} unknowns. The additional (2M+3N) equations are
obtained by requiring continuity ofcrack opening shapes and equilibrium for the rigid lines
(Hu and Chandra, 1993b). The interpolation function due to Krenk (1975) is used in the
present work to evaluate the SIFs.

The performance of such a polynomial scheme for close spacings of interacting cracks
and rigid lines is obviously an important issue in the present context. It is interesting to
note that, in their analysis of singular integral equations, Theocaris and Ioakimidis (1977)
show that the numerical scheme developed by Erdogan et al. (1973) requires only n
quadrature points for accurate representations of polynomial functions of order 2n. As the
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spacings between interacting cracks and rigid lines decrease, higher orders of polynomial
functions are needed for accurate representations. However, this does not pose any major
limitations. For a problem involving equal length collinear cracks with a small tip separation
ofO.Ola (a being the halflength of the crack), the present scheme with 30 quadrature points
on a crack yielded SIF values within 0.1 % of the analytical results of Erdogan (1962).
Melin (1983), Li and Hills (1990), and Rubinstein (1990) also adapted a similar scheme to
investigate kinked cracks. An alternative scheme using Fourier series expansion was
developed by Hori and Nemat-Nasser (1987) for analysing crack interactions at small
spacings.

5. NUMERICAL RESULTS

Applications of the proposed integral equation formulation to several example prob
lems involving interactions of cracks and rigid lines near a free surface are presented in this
section. The integral equation formulation is based on the fundamental solutions due to a
point force and a point dislocation in an elastic half plane and can handle arbitrary
orientations and distributions of cracks and rigid lines, along with arbitrary loading con
ditions, in the context of elasticity. Thus, the proposed formulation is suitable for investi
gating the effects of microdefects in ceramics and intermetallics under general loading
conditions.

In this paper, the numerical results from the proposed integral equation formulation
are first verified against existing solutions for special cases in the literature. Problems
involving general systems of cracks and rigid lines near a free surface are addressed next,
and the implications of these interactions for ceramic grinding processes are discussed.

In the following presentation, the Poisson's ratio (v) is taken to be 0.25. If not otherwise
specified, the reported stress intensity factors (SIFs) are always normalized with respect to
those of a single crack in an infinite plane subject to the same loading. The singular
intensities of tangential (PI) and normal (Ps) tractions for rigid lines are also normalized
with respect to the tangential traction singularity (Po) for a rigid line in an infinite plane
subject to the same magnitude ofremote normal traction (Wang et aI., 1985).

A rigid line normal to the free surface and subject to a remote tension is considered in
Fig. 2. The results obtained from the present analysis agree very well with those obtained
by Atkinson (1973). (Note that the lower and upper tip SIFs reported by Atkinson involve
a transformation constant. To eliminate this constant, the ratio of the upper tip SIF to the
lower tip SIF is used here.) It should be noted that the intensity of the tangential traction
singularity at the lower tip [P,( + 1)] is stronger than that at the upper tip [P,( -1)]. This is
contrary to the variations of SIFs for a corresponding crack problem. As expected, the

-8 =----------------------,

_ 7

- 6

1.2 1.4 1.6

---------<=1

----<=2
• Atkinson (1973)

1.8

Buried depth (d) of the anticrack

Fig. 2. Variations in P,( + I)/P,( -1) with the buried depth of a rigid line (anticrack).



Interactions among cracks and rigid lines 1929

\.8 ~---------------------.,

1.7

1.6

!!:: 1.5
(/)

'i
.t::! 1.4

~
~ 1.3

1.2

1.1

upper lip K[
lower lip K[

• Erdogan el el. (1973)

----------------
1.4 1.8 2.2 2.6 3.4 3.8

Buried depth (d)

Fig. 3. Variations in normalized SIF with the buried depth of a crack.

intensities at both tips tend to become equal as the buried depth is increased. Figure 3
shows a pressurized crack normal to the free surface. As the buried depth decreases, the
free surface amplifies the upper tip SIF considerably. The mode I SIFs obtained from the
present analysis also compare very well with those obtained by Erdogan et al. (1973). An
inclined crack at a normalized buried depth of 1.1 and subject to a remote tension is
considered in Fig. 4. The mode I SIFs reach a maximum when the crack is normal to the
free surface, while the mode II SIFs attain their absolute maxima of 0.63 for the upper tip
and 0.48 for the lower tip at () = 50° and () = 43°, respectively. As shown in Fig. 4, the
predictions from the present analysis also agree very well with the results obtained by
Nowell and Hills (1987). An inclined rigid line (anticrack) at a normalized buried depth of
1.2 and subject to a remote tension is considered in Fig. 5. Figure 5(a) shows that the
absolute maxima for normalized tangential traction intensity (PI/PO) occur for both upper
and lower tips at () = 0°. As shown in Fig. 5(b), the free surface makes the normal traction
intensities (PsiP0) at the upper and lower tips deviate significantly from each other. It is
important to observe from Figs 5(a) and 5(b) that, for () = 60°, the singular intensities
vanish for both tangential and normal tractions. Wang et al. (1985) show that there exists
an orientation, for a rigid line in an infinite plane, for which the traction singularities at the
tips of the rigid line disappear. Figures 5(a) and 5(b) establish that similar situations may
also occur for a rigid line near a free surface. Figure 5(c) shows the variations in rigid-body

1.6
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Fig. 4. Variations in normalized SIF with Ihe orientation of a crack.
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rotations with the orientations of the rigid line. The maximum rotation of - 0.02 radians
(a negative sign implies clockwise rotation) occurs at () = 45°.

The inset in Fig. 6 shows a crack (normalized buried depth = 0.5) in between two
parallel rigid lines (normalized buried depths of 0.4 and 0.6) subject to a remote loading,
(J o. This configuration produces significant mode I and mode II SIFs induced by interactions
among the crack and the rigid lines. The mode I SIF (normalized by (Jo~) reaches a
maximum value of 0.7 at b = 0.92; the mode II SIF reaches a value of - 0.5 at b = 1.63
(a is the half length of the crack, (J 0 the remote tension parallel to the crack, and b the ratio
of lengths between the rigid lines and the crack). This is contrary to what is observed for
cracks parallel to the direction ofloading. In the present case, however, Ut,t and Us•t [in eqns
(12)] will not necessarily be zero. This will produce nonzero Ps and Pt, which in turn will
require nonzero bs and bt • Thus, nonzero SIFs may be induced at crack tips.

The interactions between a crack and rigid line with arbitrary relative orientations are
considered next. The predictions from the present analysis at large buried depths are first
verified against the full plane solution (Hu and Chandra, 1992b). As shown in Fig. 7(a),
the results from the present analysis at a buried depth of 100a (a is the half length of the
crack) matches very well with the full plane solution. For the current example, the nor
malized distance between the centers of the crack and the rigid line is 1.2 (note that
o< () < 180°-the crack and the rigid line are never allowed to overlap); the crack and
rigid line are of equal length. The normalized SIFs for a normalized buried depth of 1.2 for
the crack and rigid-line centers are presented in Fig. 7(b). The normalized mode I SIF at
the crack tip near the rigid line reaches a minimum value of0.55 at () = 100°. The normalized
mode II SIF for the near tip varies noticeably from - 0.55 at () = 5° to 0.41 at () = 173°
and passes through zero at () = 104°. Due to effects of the free surface, the position of the
zero value deviates from () = 90°. The far-tip SIFs are not significantly affected by variations
in the orientation of the accompanying rigid line. Figure 7(c) shows the variations of
normalized traction singularities for the rigid line with its orientation. Compared to the
full plane solutions (Hu and Chandra, 1992b), the symmetry at the lower tip (about () = 90°)
is only slightly modified due to effects of the free surface. However, Pt/Po for the upper tip
reaches a maximum of 0.44 at () = 120°, which deviates considerably from the () = 90°
position of the maximum for the full plane. The variation in the rotations of the rigid line
with its orientation is presented in Fig. 7(d). The rotation reaches 0.0039 radians in the
counterclockwise direction for () = 32°. Then it reverses direction and reaches an extreme
value of 0.0068 radians in the clockwise direction at () = 160°.

Figure 8 shows the shielding between a crack and a rigid line perpendicular to each
other. The crack is pressurized. The normalized buried depth of the lower tip of the crack
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Fig. 6. Coupling-induced stress singularities for a crack in between two parallel rigid lines (anti
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Fig. 7 (continued).

is 1.2, and the rigid line is placed at a distance of 0.1 from this crack tip. Such pressurized
cracks are typical in indentation problems. The process o( grinding ceramics may also be
viewed as a moving indentation problem, and such radial cracks are commonly observed
in this process. To improve the strength of the finished workpiece, it is important to
retard the growth of such cracks normal to the free surface. It is observed, here, that the
arrangement shown in Fig. 8 makes the mode I SIF at the lower tip drop from 1.16 to 0.86
as the length of the rigid line is increased from 0.1 to 1.0. The arrangement shown in Fig.
9 has a buried crack depth of 1.2 and a buried depth of 2.2 for the centers of the rigid lines
(the lower tip of the crack is aligned with the centers of the rigid lines). The rigid lines are
spaced at a distance of 0.1 from each other. The crack is pressurized. As shown in Fig. 9,
the mode I SIF at the lower tip rises from 1.16 to 1.28 as the half length of the rigid line is
increased to 0.26. This amplification is due to tip interactions that occur in the proximity
of the crack and rigid-line tips at short lengths of the rigid line. As the length of the rigid
line is increased to 1.0, the mode I SIF at the lower tip drops to 1.18. At the same time, the
upper tip mode I SIF is also reduced from 1.46 to 1.28.

6. CONCLUSIONS AND DISCUSSION

The fundamental solutions due to point loads and point dislocations in an elastic half
plane are utilized in the present analysis to develop a model for interactions among cracks
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Fig. 8. Shielding effects between a crack and a rigid line perpendicular to each other.
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and rigid lines (or anticracks) near a free surface in the context ofelastic fracture mechanics.
An integral equation approach is pursued for this purpose. The proposed technique is
capable of handling general loading conditions and arbitrary orientations of cracks and
anticracks. A Gauss-Chebychev quadrature is used to reduce the integral equations to a
linear system of equations consisting of the distribution of forces and Burger's dislocation
vectors, respectively, on the cracks and the anticracks.

The proposed integral equation approach was first verified against existing solutions
for a single rigid line (Atkinson, 1973) and single crack (Erdogan et al., 1973; Nowell and
Hills, 1987) near a free surface. A system containing two parallel rigid lines separated by a
crack near a free surface, subject to a remote loading in the crack direction, was considered
next (Fig. 6). It is interesting to observe the existence of nonzero mode II SIFs in such a
system. A general crack-rigid line system with arbitrary relative orientations was considered
next, and the effects of relative orientations were investigated.

In the grinding of ceramics, one attempts to retard the growth of radial cracks normal
to the free surface. This improves the strength of the finished part after grinding. To improve
the efficiency of the process and to increase the material removal rate, the designer may
also facilitate the growth oflateral cracks parallel to the free surface. Based on our observations
of interactions among cracks and rigid lines, a distribution of cracks and rigid lines may be
constructed to improve the strength of the finished product, as well as to improve the
material removal rate in the grinding of ceramics. Many real-life materials contain hard
second-phase whiskers or lamellae that may be modeled as rigid lines. The proposed integral
equation approach provides an avenue for investigating general systems of cracks and rigid
lines near a free surface. Work on sensitivity studies for such systems and applications to
ceramic grinding processes is currently in progress at The University of Arizona.
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APPENDIX

The fundamental functions in eqns (I) and (2) are given as

(
2x, SX1) 2 (. I 4X~)}'

-·4~ - ~-- +-- +8~ -' +;' ,
r~ r~ r~ r~

(I<:-I)x, 2(,,+ 3)x; ......""".-'0 _ 2(31\:+ l)x1 +)t (_ I\: -·1 '" 2(1~ :t:.5)x~ _ 16;"... i)
H 9(x,y;O = ----2------

r
-4·-·+···· -c" " ,

r l I f:: r~ ~

(
. ') I.,),(1<:-I)x2 16x; "' (2 4X'}-4.1' - - --- +8" .

~ r~ 1'1 r~ J _
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.;: {K+3 4xi 3K+1 4KX~ ;:(K-S)X2 8X~) 2( I 4X~)}H,.(x.y,..,)=y --2-+-' ---2-+-.--4.. --.-+"6" +8~ -'+-6 '
" " '2'2 '2'2 '2'2

[,(X,y;O = y {_ K-I _ 4x; + K-I + 4xi -4~ (K+3)X2 _ 8X~) +8~2 (~_ 4X~)},
ri ,1 d'~ ,~,~ ,~,~

(K-S)X, 4xl (K-S)X 2 4x~ ;:(K-1 2(K-7)xi 16X~) 8;:2 (3X 2 4X~)[(xy-O=---+--------2.. -+ -- + .. ---
2 , , rr r~ r~ r~ T~ r~ r~ ,; r~'

{
K-I 4x; K-I 4xi (K-I)X2 8X~) 2 (I 4Xi)}[.(X,y;O=y -+------4~ ------ +8~ --- ,r7 r1 ri r~ r; r~ r; r~

(K+3)x, 4x~ (K+3)X2 4x~ ;:(K+3 2(K+9)xi 14Xi) ;:2 ( 3X2 4X~)
[,(x.y;~)= ----+-+------2.. -- +- +8.. --+-,ri r; ri r; ri r; r~ r; r~

.;: {K+3 4xi K+3 4xi 4;: (K+3)X2 8X~) 8;:2(1 4xi)}[6(X,y . ..,) = y - -,2 + -,. + -,2 -7 - .. --,-.- - -,6 +.. -,. - -,6 .
I I 2 2 2 2 2 2

. _ { K-I 4xi K-I 4x~ (K+3)X2 8X~) 2( 1 4xi)}
[7(X.y,e> - y - -2- + -. + -2- - -. +4~ --.- -"6" +8~ -. +"6" .

" " '2'2 '2'2 '2'2

[s(x,y;~) = (K-I)x, + 4x,y2 _ (K-I)x2 _ 4X2Y2 -2~ (_ K-I + 4xi + 2(K-I)y2 _ 16XiY2)
rr r~ ri,; ri r; r~ r~

+8e2 (X 2 _ 4X
2Y2

) ,
,~ ,~

{ ( 1 I) 2(1 I) (3X2 4X
2Y2

) 2(3 4
y2

)}[9(X,y;e) = y 6 - - + - +4y - - - -8e - - +-- -8~ - - - ,
rf ri r~ r~ r; r~ r; r~

where

x, = x-~


